8 research outputs found

    Presentation of a fault tolerance algorithm for design of quantum-dot cellular automata circuits

    Get PDF
    A novel algorithm for working out the Kink energy of quantum-dot cellular automata (QCA) circuits and their fault tolerability is introduced. In this algorithm at first with determining the input values on a specified design, the calculation between cells makes use of Kink physical relations will be managed. Therefore, the polarization of any cell and consequently output cell will be set. Then by determining missed cell(s) on the discussed circuit, the polarization of output cell will be obtained and by comparing it with safe state or software simulation, its fault tolerability will be proved. The proposed algorithm was implemented on a novel and advance fault tolerance full adder whose performance has been demonstrated. This algorithm could be implemented on any QCA circuit. Noticeably higher speed of the algorithm than simulation and traditional manual methods, expandability of this algorithm for variable circuits, beyond of four-dot square of QCA circuits, and the investigation of several damaged cells instead just one and special cell are the advantages of algorithmic action

    Improving the reliability in bio-nanosensor modules using hardware redundancy techniques

    Get PDF
    A nano-robot is a controlled robotic system at the nanoscale. Nowadays, nanorobotics has become of particular interest in medicine and pharmacy. The accurate diagnosis of the diseases as well as their rapid treatment will make everyone surprised and will significantly reduce the associated risks. The modeling of reliability in biosensors is studied for the first time in this paper. The use of practical hardware redundancy has turned into the most cost-effective to improve the reliability of a system. Additionally, the Markov model is used to design fault-tolerant systems in nanotechnology. The proposed method is compared with some existing methods, such as triple modular redundancy and non-fault-tolerant systems; it is shown that using this method, a larger number of faults between 3-5 can be tolerated. Using the proposed method, the number of modules can be increased to nine. However, a larger number than 9 MR is not recommended because of an increased delay and requiring more hardware. As the scale of components used in digital systems has gotten smaller, the use of hardware redundancy has become cost-effective. But there is a trade-off between the amount of used hardware and fault tolerance, which can also be investigated

    Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force

    No full text
    On-chip optical tweezers based on evanescent fields overcome the diffraction limit of the free-space optical tweezers and can be a promising technique for developing lab-on-a-chip devices. While such trapping allows for low-cost and precise manipulation, it suffers from unavoidable contact with the device surface, which eliminates one of the major advantages of the optical trapping. Here, we use a 1D photonic crystal cavity to trap nanoparticles and propose a novel method to control and manipulate the particle distance from the cavity utilizing a self-induced back-action (SIBA) mechanism and electrical-double-layer (EDL) force. It is numerically shown that a 200 nm radius silica particle can be trapped near the cavity with a potential well deeper than 178k(B)T by 1 mW of input power without any contact with the surface and easily moved vertically with nanometer precision by wavelength detuning. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
    corecore